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a b s t r a c t 

Background and objective: Intracranial hemorrhage (ICH) is a life-threatening emergency that can lead 

to brain damage or death, with high rates of mortality and morbidity. The fast and accurate detection 

of ICH is important for the patient to get an early and efficient treatment. To improve this diagnostic 

process, the application of Deep Learning (DL) models on head CT scans is an active area of research. 

Although promising results have been obtained, many of the proposed models require slice-level annota- 

tions by radiologists, which are costly and time-consuming. Methods: We formulate the ICH detection as 

a problem of Multiple Instance Learning (MIL) that allows training with only scan-level annotations. We 

develop a new probabilistic method based on Deep Gaussian Processes (DGP) that is able to train with 

this MIL setting and accurately predict ICH at both slice- and scan-level. The proposed DGPMIL model 

is able to capture complex feature relations by using multiple Gaussian Process (GP) layers, as we show 

experimentally. Results: To highlight the advantages of DGPMIL in a general MIL setting, we first con- 

duct several controlled experiments on the MNIST dataset. We show that multiple GP layers outperform 

one-layer GP models, especially for complex feature distributions. For ICH detection experiments, we use 

two public brain CT datasets (RSNA and CQ500). We first train a Convolutional Neural Network (CNN) 

with an attention mechanism to extract the image features, which are fed into our DGPMIL model to 

perform the final predictions. The results show that DGPMIL model outperforms VGPMIL as well as the 

attention-based CNN for MIL and other state-of-the-art methods for this problem. The best performing 

DGPMIL model reaches an AUC-ROC of 0.957 (resp. 0.909) and an AUC-PR of 0.961 (resp. 0.889) on the 

RSNA (resp. CQ500) dataset. Conclusion: The competitive performance at slice- and scan-level shows that 

DGPMIL model provides an accurate diagnosis on slices without the need for slice-level annotations by 

radiologists during training. As MIL is a common problem setting, our model can be applied to a broader 

range of other tasks, especially in medical image classification, where it can help the diagnostic process. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Intracranial hemorrhage is a severe life-threatening emergency 

ith high rates of mortality and permanent disability. It is initially 
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aused by blood leaking inside the cranium, where the rapidly in- 

reasing blood pressure of the brain leads to severe brain dam- 

ge or death [1] . It is reported that around 40,0 0 0 to 67,0 0 0 sub-

ects suffer from ICH per year in the United States [2] and 30% 

f them eventually die [3] . To avoid death or remaining damages, 

arly treatment is crucial. The study shows that, without timely 

rain surgery, nearly half of the deaths occur in the first 24 h 

nd only 20% of the surviving patients have the chance to com- 

letely recover at the end [2] , indicating the important role of a 

ast and accurate ICH diagnosis in improving the survival rates and 

hances of recovery. Computed Tomography (CT) is a widely used 

on-invasive imaging technique for the ICH diagnosis, that is ac- 

essible and cheap for patients and at the same time, convenient 
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nd fast for radiologists. However, studies show that radiologists 

ay misdiagnose after long hours of CT scans readings [4,5] . As 

omputer-aided diagnosis (CAD) methods can help to reduce the 

orkload of radiologists and provide an accurate diagnosis, they 

re of high clinical importance. 

With the rapid development of DL, several models have been 

roposed to detect ICH. CNNs foster self-learning filters to focus 

n regions of interest without the need for manual feature extrac- 

ions. The simplest way is to apply DL models on a single slice di- 

ectly and predict the ICH at slice-level. For instance, Phong et al. 

6] compared three types of traditional CNN models and found 

hat models with pre-trained weights on non-medical images im- 

roved the ICH diagnosis. Cho et al. [7] developed a cascade DL 

odel based on CNNs and dual fully convolutional networks to 

mprove the sensitivity in identifying ICH. Although these models 

chieved good classification performances, it is challenging to col- 

ect a large number of slice annotations because manual labeling is 

ime-consuming and requires expert knowledge. The ground truth 

t scan-level is, however, relatively easy to obtain, as it can be gen- 

rated directly from the clinical radiologists’ report. Therefore, an 

merging approach using only scan-level labels consists of predict- 

ng ICH on full 3D scans. For instance, Titano et al. [8] utilized 

 3D Resnet-50 CNN to predict ICH on brain scans and Jnawali 

t al. [9] ensembled three different 3D CNNs to improve the detec- 

ion rate of ICH. However, one major problem of 3D CNNs lies in 

heir highly expensive computation, leading to out-of-memory er- 

ors during the training processes. In addition, 3D models are not 

ble to indicate the specific slice that contains the possible ICH in- 

ide a scan. This is however crucial to facilitate the ICH localiza- 

ion. 

Another approach that uses only scan-level labels is the MIL 

aradigm. MIL is a weakly-supervised learning method that has 

een proposed to solve the problems when only bag labels are 

vailable [10] . It has been applied in many medical domains. Cam- 

anella et al. [11] trained a MIL model to diagnose cancer in 

istopathological images with slide labels by finding the highest 

robability per bag and then applying a recurrent neural network 

n the extracted features of each instance to predict the whole 

lide. Recently, attention-based methods are gaining more and 

ore popularity in the field of medical imaging for the MIL setting. 

imilarly to channel attention mechanisms that are weighting each 

hannel of a CNN layer with attention weights [12] , the attention 

eights in the case of MIL are assigned to the instances [13] . These

nstance attention weights provide insight into the contribution 

f each instance to the bag predictions. Several approaches have 

xtended this attention mechanism to different medical applica- 

ions: Han et al. [14] proposed an attention-based deep 3D MIL 

o diagnose COVID-19 from chest CT, where the attention mech- 

nism is able to find key instances to interpret the specific in- 

ection areas of COVID-19. Qi et al. [15] developed another deep 

epresentation based MIL system to classify COVID-19 from normal 

neumonia, which was first pre-trained to generate each instance 

eature and then generated predictions using the k-nearest neigh- 

ors. Similarly, they found that the attention weights highlight in- 

ected lesions, providing strong evidence for the diagnosis. Other 

pproaches for the MIL problem are based on Gaussian Processes 

GPs), which were first proposed as Variational Gaussian Processes 

or MIL (VGPMIL) obtaining promising results in many different 

cenarios. For instance, they performed well for the classification 

f histological images of Barrett’s cancer [16] . In our previous work 

17] , VGPMIL combined GPs with an attention-based CNN to ad- 

ress ICH diagnosis in a MIL setting. We proved that GPs outper- 

ormed the attention mechanism of CNNs for the ICH problem and 

et a new state-of-the-art for ICH diagnosis using only scan labels 

or training. To the best of our knowledge, this was the first time 

hat GPs have been applied to the ICH diagnosis problem. 
2 
Although Gaussian Processes have not been widely used for ICH 

et, they have achieved promising results on many other classifi- 

ation tasks [18] , such as non-parametric and probabilistic mod- 

ls, which are capable of dealing with uncertainty in modeling and 

rediction [19] . Prior information can be included in the kernel 

unction acting as a regularizer. Thus, they are not prone to over- 

tting. The flexibility, expressiveness, and robustness to overfitting 

f GPs make them suitable for a wide range of problems, espe- 

ially, when only limited data is available. For this reason, they are 

romising for medical applications. In spite of all the benefits pre- 

iously mentioned, GPs suffer from an important drawback. Com- 

only, they are used with stationary kernels. These kernels work 

ell in many scenarios but they are not able to capture complex 

atterns, e.g., a function that is flat in one region and varies rapidly 

n another. Moreover, high parametrized kernels, which represent 

icher functions using shallow GPs, are expensive to train so ap- 

roximate methods may be at risk of overfitting [20] . To overcome 

his limitation, DGPs have been introduced [21] . They are hierarchi- 

al extensions of GPs enabling to model more complex functions 

hile retaining all the benefits of shallow GPs. DGPs can learn a 

epresentation hierarchy non-parametrically with very few hyper- 

arameters [20] . DGPs have been used in medical imaging prob- 

ems, such as histology, with sound results [22] against GPs and DL 

ethods. So far the existing DGP-approaches focused on fully su- 

ervised training mostly for regression [20,21] , classification [20–

2] , or special cases like multi-view representation learning [23] , a 

earning paradigm where multiple data sources with different data 

ormats are taken into account. To the best of our knowledge, there 

s no existing DGP-model for the MIL setting with only bag labels 

vailable. 

This work aims to extend our previous conference paper [17] , 

hich uses an attention-based MIL combined with GPs for ICH de- 

ection. We overcome the limitation of the originally applied shal- 

ow GP, which is only capable of modeling functions with limited 

omplexity. Therefore, instead of using GPs, we propose a novel 

IL method based on DGPs called DGPMIL. The new DGPMIL is 

ore flexible than VGPMIL and improves the performance of the 

lassifier. In this work, we also use the attention-based CNN pro- 

osed in [17] to extract the features, but this time, the hierarchical 

tructure of DGPs enables us to capture richer patterns. In addi- 

ion, the inducing locations of DGPMIL are optimized per layer in 

ontrast to VGPMIL, the model used in [17] , where they were fixed 

fter a k-means estimation. The main contributions are: 

• We introduce DGPMIL, a novel probabilistic model based on 

DGPs for MIL classification. To the best of our knowledge, DGPs 

have never been proposed before for MIL in any domain. We 

outline the detailed theoretical derivation and make the im- 

plementation of the model publicly available at https://github. 

com/wizmik12/DGPMIL . It is based on GPytorch, a framework 

for GPs on top of Pytorch, and can leverage GPU computation 

for fast inference. 
• We study the behavior of this new MIL approach in a controlled 

experiment using the MNIST database. This experiment shows 

how the greater expressiveness of deep GPs achieves better re- 

sults than shallow GPs in MIL. 
• Finally, we apply the DGPMIL model combined with an at- 

tention CNN to ICH detection with labels at the scan level. 

These experiments demonstrate the suitability of this method 

for medical imaging. We report competitive or superior results 

to current state-of-the-art methods. Remarkably, the precision 

obtained at detecting ICH is notably better than previous ap- 

proaches for this problem. 

The rest of the paper is organized as follows. Section 2 de- 

cribes the proposed model. We explain the feature extraction 

rocess using an attention-based CNN and also describe DGPMIL. 

https://github.com/wizmik12/DGPMIL
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Fig. 1. The proposed architecture for the ICH detection with scan labels. In phase 1 the feature extractor is trained using an attention module for bag level predictions 

(Att-CNN). In phase 2 the weights of the feature extractor are frozen and DGPMIL is trained to predict slice and scan level labels. We depict only a two-layer DGPMIL here 

although in the experiments we use a varying amount of layers to find the optimal configuration. 
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ection 3 validates the method. We first create a synthetic MIL 

roblem of digit classification to show the behavior of DGPMIL and 

hen we perform a comprehensive validation for ICH detection on 

T scans. Section 4 analyzes the main findings of the reported re- 

ults and Section 5 concludes our work. 

. Methods 

.1. Problem formulation 

Mathematically, we model the ICH detection as a MIL prob- 

em. We denote the set of all CT slices as X = { x 1 , x 2 , . . . , x N } and

he true (unobserved) slice labels as Y = { y 1 , y 2 , . . . , y N } with y i ∈
 0 , 1 } , where the class label 1 is assigned when the slice or scan

s ICH positive and otherwise 0 if no ICH is present, and N is the

otal number of slices in a given bag. Note that N can vary de- 

ending on the bag. In the context of MIL, these slices are called 

nstances and a complete scan (consisting of multiple slices) bags . 

he bags are non-overlapping, such that each index i of an in- 

tance can be only assigned to one bag b. We denote the instances 

f one bag as X b = { x i | i ∈ bag b} and corresponding instance labels

s Y b = { y i | i ∈ bag b} . In the MIL assumption, the instance labels

emain unobserved and only the bag label T b is known. When a 

T scan is diagnosed as ICH positive, at least one slice must con- 

ain the pattern of hemorrhage while a negative scan contains only 

egative slices, in other words, 

 b = max { y i | i ∈ bag b} . (1) 

.2. Overview of the model 

To solve the MIL problem just defined, our model is trained in 

wo phases, described in Fig. 1 . First, we train a convolutional neu- 

al network (CNN) that serves as a feature extractor in combina- 

ion with an attention mechanism (Phase 1). The purpose of this 

hase is to build a feature extractor that is able to obtain expres- 

ive features from the slices. Although this phase 1 model (Att- 

NN) is also able to predict ICH on CT scan level we disregard the 

ttention layer after the first phase because we can experimentally 

rove that our DGPMIL model shows a stronger classification per- 

ormance using the obtained features (see 3.4 ). The second phase 

onsists of the classification using the extracted model features. In 

17] , the second phase was performed using VGPMIL. Notice that 

his shallow model could be too simple for the extracted features. 
3 
n this work, we propose for the first time Deep Gaussian Processes 

or Multiple Instance Learning (DGPMIL). We describe the model- 

ng and the inference with all derivations. The emphasis of this 

ork lies on the training of the DGPMIL model (in phase 2) that 

rovides the final slice and scan level predictions. We prove that 

GPs take advantage of the complex patterns of the extracted fea- 

ures. 

In the following subsections, we will briefly explain how the 

eature extraction is performed in our experiments. 

.3. Feature extraction 

This subsection provides a brief introduction to the attention 

echanism with CNNs to extract brain CT features at slice-level, 

s shown in Fig. 1 . Assume a CNN model F cnn is used to extract

igh dimensional features ξi for each instance x i , such that ξi = 

 cnn (x i ) , ∀ i = 1 , 2 , . . . , N. Note that the same network is applied to

ach instance and the weights are shared. F cnn consists of six con- 

olutional layers, each followed by a max pooling layer. The con- 

olutional layers aim to extract discriminative features from each 

nstance and the max pooling layers are used to reduce the feature 

imensions. Moreover, a flatten layer and a fully connected layer 

re followed by to control the size of feature vectors ξi ∈ R M×1 fed 

o the attention layer and the DGPMIL model in Phase 2. 

An attention layer L att is applied after F cnn to estimate an atten- 

ion weight αi , corresponding to each unique feature vector ξi . The 

ttention weights are used to calculate a weighted sum of feature 

ectors for the final, bag-level classification. Let �b = { ξi | i ∈ bag b} 
e the set of all feature vectors in a bag b and { αi | i ∈ bag b} be the

ttention weights for feature vectors �b , such that L att is defined 

s 

 att (�b ) = 

∑ 

i ∈ b 
αi ξi , (2) 

here 

i = 

exp { w 

� tanh (V ξi ) } ∑ 

j∈ b 
exp { w 

� tanh (V ξ j ) } 
, (3) 

 ∈ R L ×1 and V ∈ R L ×M are trainable parameters that accommodate 

ifferent instance numbers of a bag. The hyperparameter L is one 

imension of weight matrices w and V which defines the number 

f trainable parameters of the attention mechanism (and is invari- 

nt to the bag size). We set L = 50 following the existing literature 
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13] . M equals the dimension of the feature vectors, and we report 

he experiments for M = 8 , 32 , and 128, see Section 3.4.1 . The sum

f all αi in one bag is 1. The non-linearity tanh (·) aims to preserve 

oth positive and negative values during the gradient flow. 

Next, the weighted sum of the feature vectors L att (�b ) is fed to 

 classifier F c , which is made up of a fully connected layer with a

igmoid activation function, to predict the scan labels, such that 

p(T b | X b ) = F c (L att (�b )) = F c (L att (F cnn (X b ))) . (4)

The feature extractor F cnn , attention layers L att and classifier F c 
re trained end-to-end using the basic binary cross-entropy, CE, 

ntil it converges. The loss L is defined as: 

 = 

∑ 

b 

CE(T b , p(T b | X b )) . (5) 

his whole attention CNN process is denoted as Att-CNN. For more 

etails about the attention mechanism for MIL, we refer to [13] . 

revious studies show that the labels at the instance level can be 

nferred from the attention weights [13,24] . The closer to 1, the 

ore important role that specific instance contributes to the bag 

rediction. Therefore, in terms of this study, if a scan is predicted 

s normal, all slices will be considered normal. If a scan is pre- 

icted as the ICH, the slices with min-max normalized attention 

eights above 0.5 will be predicted as the ICH. By doing this, we 

re able to have weakly predicted labels at slice-level to facilitate 

adiologists with their diagnosis and localization. In the next sec- 

ion, we describe the DGPMIL model for the given problem. In 

hat follows, to be consistent with the GP literature, we replace 

b and ξi by X b and x i as the extracted feature vectors serve as an 

nput for the final DGP classification. 

.4. Deep gaussian processes for multiple instance learning (DGPMIL) 

Here, we introduce the novel DGP model to solve the MIL prob- 

em for binary classification. We outline the basic theory of GPs 

nd DGPS in the Appendix A and refer the reader to [19,21,25] for 

urther theoretical background. Note that in contrast to previous 

GP-based methods, our proposed model trains with only the bag 

abels T b while the instance labels y b are unknown, as described 

n Section 2.1 . For the observation model, we follow the approach 

sed for Variational Gaussian Process Multiple Instance Learning [16] . 

here, the authors parametrize the bag label likelihood using 

(T b | Y b ) = 

H 

G b 

H + 1 

, (6) 

here G b := T b max (y b ) + (1 − T b )(1 − max (y b )) . In this equation,

is a positive constant. Notice that this likelihood is a noisy ver- 

ion of the MIL assumption presented in Section 2.1 and it be- 

omes exact when H approaches infinity. The constant H controls 

he probability of the bag being positive considering that there is 

t least one positive instance. Assuming independence across bags 

roduces the factorization 

(T | Y ) = 

B ∏ 

b=1 

H 

G b 

H + 1 

, (7) 

here T refers to the variable which groups together all the bag 

abels. 

We predict the instance label y by modeling a latent function 

 

L using a DGP with L layers. 

Combining the Deep Gaussian Process model and the bag ob- 

ervation model we obtain the full probabilistic model 

(Y , T , { F l , U 

l } L l=1 ) = p(T | y ) · p(y | F L ) 
L ∏ 

l=1 

p(F l | U 

l ; F l−1 , Z 

l−1 )p(U 

l ; Z 

l−1 ) , (8) 
a

4 
here the dependency on the observed features X and the hyper- 

arameters � have been omitted for simplicity. 

.5. DGPMIL inference 

In this subsection, we describe the inference for our DGP- 

IL model. Additional details are provided in Appendix B . 

ur goal is to approximate the intractable posterior distri- 

ution p(Y , { F l , U 

l } L 
l=1 

| T , �) with an approximate distribution

(Y , { F l , U 

l } L 
l=1 

) . Specifically, we perform doubly stochastic infer-

nce for DGPs [20] . We convert the inference problem into an op- 

imization one by maximizing the Evidence Lower Bound (ELBO), 

efined by 

LBO(q) = 

∫ 
q(y , { F l , U 

l } L l=1 ) 

× log 
p(y , { F l , U 

l } L 
l=1 

| T , �) 

q(y , { F l , U 

l } L 
l=1 

) 
d y d { F l , U } L l=1 . (9) 

 

In this work, we use the mean-field approximation, i.e., q fac- 

orizes across as follows: 

(Z , { F l , U 

l } L l=1 ) = q(Y ) × q({ F l } L l=1 |{ U 

l } L l=1 , �) × q({ U 

l } L l=1 ) , 

(10) 

ith the following parametric form for each factor: 

(Y ) = 

N ∏ 

n =1 

q(y n ) = 

N ∏ 

n =1 

q y n n (1 − q n ) 
1 −y n , (11) 

({ F l } L l=1 |{ U 

l } L l=1 , �) = p({ F l } L l=1 |{ U 

l } L l=1 , �) , (12) 

({ U 

l } L l=1 ) = 

L ∏ 

l=1 

q(U 

l ) = 

L ∏ 

l=1 

N (U 

l | m 

l , S l ) . (13) 

he proposed posterior on the instance labels Y factorizes across 

he instances and we denote by q n the probability of the n th in-

tance to belong to the positive class and by q b−n all other instance 

robabilities in the same bag. The prior conditional F | U does not 

ntroduce any new variational parameter. The proposed posterior 

istribution on U 

l factorizes across the layers and is given by a 

aussian distribution. In summary, the variational parameters V to 

e estimated are { q n } N n =1 
and { m 

l , S l } L 
l=1 

. 

Finally, we obtain V , �, and { Z 

l } L 
l=1 

by maximizing the ELBO. 

he ELBO can be written explicitly as 

LBO (V , �, { Z l−1 } L l=1 ) = 

 q(Y ) p({ f l } L 
l=1 

|{ U l } L 
l=1 

) q({ U } L 
l=1 

) 

log 
p({ U } L 

l=1 
) p({ F l } L 

l=1 
|{ U 

l } L 
l=1 

) p(Y | f L )p(T | Y ) 

q({ U } L 
l=1 

) p({ F l } L 
l=1 

|{ U 

l } L 
l=1 

) q(Y ) 

]

= E q(Y )p(F L | U L )q(U L ) 

[
log p(Y | f L ) ] + E q(Y ) [ log p(T | Y ) ] 

− E q(Y ) [ log q(Y ) ] 

+ E q({ U l } L 
l=1 

) 

[
log 

p({ U 

l } L 
l=1 

) 

q({ U 

l } L 
l=1 

) 

]
. (14) 

Notice that the term E q(Y ) [ log p(T | Y ) ] is not differentiable since 

t involves the max function. This fact prevents us from optimiz- 

ng the ELBO using gradient descent. To overcome this limitation, 

e iteratively update first q(Y ) and then the DGP parameters. 

ince we are using the mean-field approximation, following the 

pproach of [16] , we can compute the optimal distribution of q(Y ) 
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Fig. 2. Examples of bags in the training set for the MNIST experiment. 

Table 1 

Results in the MNIST of Multiple Instance Methods based on Gaussian Processes us- 

ing the first 30 principal components after using PCA. VGPMIL is the shallow Vari- 

ational GP while DGPMIL is the deep version with 2, 3, and 4 GP layers. We assess 

the classification performance both at the instance and bag levels. 

Instance level Bag level 

Accuracy Log Loss Accuracy Log Loss 

VGPMIL 0.9767 0.6006 0.8496 0.4016 

DGPMIL2 0.9896 0.2672 0.9586 0.2859 

DGPMIL3 0.9913 0.2638 0.9760 0.2531 

DGPMIL4 0.9909 0.2602 0.9760 0.2517 

Table 2 

Results in the MNIST of Multiple Instance Methods based on Gaussian Processes us- 

ing the 784-dimensional feature vector. VGPMIL is the shallow Variational GP while 

DGPMIL is the deep version with 2, 3, and 4 GP layers. We assess the classification 

performance both at the instance and bag level. 

Instance level Bag level 

Accuracy Log Loss Accuracy Log Loss 

VGPMIL 0.1135 0.6931 0.4978 0.6931 

DGPMIL2 0.9857 0.2729 0.9304 0.3113 

DGPMIL3 0.9930 0.2655 0.9717 0.2519 

DGPMIL4 0.9932 0.2533 0.9652 0.2598 
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ith the other distributions fixed [26] . The optimal update for q(y ) 

s given by (see Appendix B.1 ), 

 n ← σ
(
E q( f L n ) 

[
f L n 

]
+ log H · (2 T b + max q b−n − 2 T b max q b−n − 1) 

)
.

(15) 

Using the approximation E [ max { y i } ] ≈ max { E [ y i ] } as in [16] ,

he ELBO can be approximated by (see Appendix B.2 ) 

LBO ≈
N ∑ 

n =1 

q n E q( f L n ) 

[
log p(y n = 1 | f L n ) 

]
+ (1 − q n ) E q( f L n ) 

[
log p(y n = 0 | f L n ) 

]
+ log H 

B ∑ 

b=1 

( 2 T b max q b − max q b ) 

−
N ∑ 

n =1 

q n log q n + (1 − q n ) log (1 − q n ) 

−
L ∑ 

l=1 

KL 
(
q(U 

l ) || p(U 

l ) 
)

+ const . (16) 

Now, with q n fixed, we can optimize the ELBO in Eq. (16) to 

btain the optimal distribution for q({ U 

l } L 
l=1 

) , the kernel hyperpa- 

ameters � and the inducing locations { Z 

l } L 
l=1 

by using gradient 

escent (see Appendix B.3 ). Then, we can compute the variational 

arameters q n with the update in Eq. (15) where the other param- 

ters are fixed. As we commented before, this optimization is per- 

ormed iteratively. 

. Experiments 

This section provides an empirical validation of the proposed 

GPMIL model. We carry out two different experiments. First, we 

reate a synthetic toy example based on the popular MNIST dataset 

o show the behavior of DGPMIL against VGPMIL [16] in a con- 

rolled environment. Then, we use the features extracted by the 

ttention-based CNN presented in Section 2.3 with both VGPMIL 

nd DGPMIL for clinical ICH detection. We show the capacity of 

GPMIL against the previous VGPMIL [17] and other state-of-the 

rt methods in this problem. 

.1. Toy example: MNIST 

To see the behavior of the novel DGPMIL, we analyze a syn- 

hetic MIL problem using the MNIST dataset. MNIST has 60,0 0 0 

raining samples and 10,0 0 0 test samples and each instance is 

omposed of a 784-dimensional feature vector. We want to com- 

are a shallow GP model with deep GP models to evaluate their 

apacity to handle high-dimensional, complex feature distributions. 

ince it is a controlled experiment, we carry out a comprehen- 

ive analysis to highlight its main properties. The availability of in- 

tance labels allows us to assess the model at both instance and 

ag levels. 

In our MNIST synthetic problem, bags contain images of num- 

ers between 0 and 9. The goal is to decide whether the bag con- 

ains at least one image of a one and, if possible, to localize it 

them) in the bag. Each positive bag contains 1 to 10 positive (im- 

ges of ones), and 10 to 30 negative (other numbers) instances. 

egative bags contain only negative, specifically 10 to 30 negative 

nstances. In total, we obtain 1416 negative and 1333 positive bags 

or training. Figure 2 shows two examples of bags in the training 

et. The 10,0 0 0 samples of the test set are distributed in 229 nega-

ive and 231 positive bags. We compare DGPMIL and VGPMIL mod- 

ls in our experiment. For the Deep Gaussian Process model, we 

ompare the performance with 2, 3, and 4 GP layers. The dimen- 

ion of the latent space of the hidden layers is set to 7 for every
5 
ayer, 200 inducing points are used for each model per layer. We 

ompute the accuracy in the test set at both instance and bag level. 

o assess the confidence of the methods, we also compute the log 

oss over the test set. 

.1.1. Dimensionality reduction with PCA 

Shallow methods are not good at dealing with high- 

imensional complex data. This is one of the main reasons for the 

dvent of hierarchical methods. For a fair comparison, we first re- 

uce the dimensionality of data with Principal Component Analy- 

is (PCA) and keep the first 30 principal components for each digit 

mage. In the next experiment, we apply VGPMIL and DGPMIL to 

he raw MNIST. By doing this, we can analyze and discern the rele- 

ance of deep methods in both low and high-dimensional contexts. 

Table 1 shows the comparison between VGPMIL and DGPMIL 

or this experiment. VGPMIL achieves a good instance classification 

ith a value of 0.9767 in accuracy but lower for bag classification 

ith 0.8496. In contrast, DGPMIL shows a good performance for 

oth, instance and bag classification. For example, DGPMIL3 ob- 

ains 0.9913 at the instance level and 0.9760 at the bag level. In 

eneral, DGPMIL outperforms VGPMIL at the bag level. Regarding 

he log loss, VGPMIL performs poorly at the instance level which 

ndicates that the high uncertainty lowers the overall bag classifi- 

ation. Although we reduced the complexity of this problem by the 

CA preprocessing, we observe that the deeper GP models achieve 

ignificantly better performance on the bag level. 

.1.2. Raw MNIST data 

Table 2 shows the comparison between VGPMIL and DGPMIL on 

he raw MNIST data. Due to the high-dimensionality of this dataset 

nd the simplicity of the classifier, VGPMIL performs poorly. This 
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able shows that it predicts always the positive class at the in- 

tance and bag level. That is the reason why it reaches a value 

f 0.11 in accuracy for instance evaluation, while reaches a value 

f 0.49 in accuracy for bag evaluation. In contrast, deep models 

re able to process this high-dimensional data and provide accu- 

ate predictions. We can see that the best instance classifier is the 

eepest model DGPMIL4 with an accuracy of 0.9932 and log loss 

f 0.2533, followed by DGPMIL3, which achieves the best result at 

ag level with an 0.9717 accuracy and of 0.2519 log loss. 

.2. CT scan 

So far, we have seen the behavior of DGPMIL in a controlled 

xperiment. It shows a satisfying performance against its shal- 

ow version, i.e., VGPMIL. Now, we study the performance of an 

ttention-based CNN combined with GP-based methods in a real- 

orld problem. We tackle the problem of detecting ICH on brain 

Ts in a MIL setting. We analyze the advantages produced by us- 

ng a DGP classifier on the top of the CNN instead of a shallow

P, which was presented in [17] . We consider a full scan as a bag

nd each slice in a scan as an instance. Generally, different scans 

ontain a different number of slices. So in this case, the number of 

nstances in bags varies. 

.2.1. Data preprocessing 

The used dataset was published by the Radiological Society of 

orth America (RSNA) 1 in 2019. This study includes a total of 

9750 slices acquired from 1150 patients, which are further split 

nto 10 0 0 subjects for training and validation, and the rest 150 

ubjects for testing. Specifically, the training dataset includes 589 

ormal scans (i.e., negative cases) and 411 scans with ICH (i.e., pos- 

tive cases) and the testing dataset includes 78 normal scans and 

2 ICH scans. The number of slices in each scan ranges from 24 

o 57 in size of 512 × 512. At slice-level, the training dataset in- 

ludes 29,520 negative slices and 4976 positive slices and the test- 

ng dataset includes 806 positive slices and 4 4 48 negative slices. 

The CQ500 dataset provided by various centers in New Delhi, 

ndia [27] is used as an external test set in this study to show the

eneralization of our proposed model trained on RSNA. It includes 

he ground truth only at scan-level, including 285 normal scans 

nd 205 ICH scans. The number of slices in each scan varies from 

6 to 128. 

In both datasets, in order to mimic the way radiologists often 

djust different window centers (C) and widths (W) when diag- 

osing a brain scan, each slice is passed through three window 

ettings to enhance the different display of the brain [W:80, C:40], 

lood [W:200, C:80] and soft tissue [W:380, C:40]. The windowing 

mages from each slice are stacked together as three image chan- 

els and the intensities are normalized to [0,1] before being fed 

nto the CNNs. 

.3. Implementation details 

The model is first trained with an attention CNN with the 

round truth at scan-level where the estimated attention weights 

ill indicate the probability of that slice being positive. Then, the 

eatures at slice level can be extracted from the fully connected 

ayers. Finally, these extracted features are fed into VGPMIL and 

GPMIL. 

The attention CNN is trained from scratch (without pre-trained 

eights) and the whole training procedure costs an average of 

.5 h. The number of training epochs is 100 and the batch size is 
1 https://www.kaggle.com/c/rsna-intracranial-hemorrhage-detection/ 

t

D

M

6 
6 per step. The Adam optimizer [28] is used with an initial learn- 

ng rate of 5 × 10 −4 . The experiment is run five times indepen- 

ently and both the training and testing processes are performed 

n a single GPU (Nvidia GeForce RTX 2070 Super) using Tensorflow 

.0 and Python 3.7. 

In this experiment, we compare the performance of GP-based 

ethods and deep neural networks. We use the shallow VGPMIL 

nd three different values of depth for DGPs: 2-layer (DGPMIL2), 

-layer (DGPMIL3) and 4-layer (DGPMIL4) models. The training of 

GP models is performed with Adam optimizer, 512 mini-batch 

ize and 30 epochs. Furthermore, the dimension of the latent space 

as been set to 3 for hidden layers. After several tries, we see em- 

irically that a small latent space benefit and accelerate conver- 

ence. The learning rate is set to 0.001. While for VGPMIL we use 

he published implementation in NumPy of [16] , DGPMIL is imple- 

ented using GPyTorch 1.3.1, which is a software for GPs based on 

yTorch. The used version of PyTorch is 1.7.1. 

.4. Results 

In this section, we report the results for ICH detection. First, 

e study the impact of the hyperparameters to the model’s per- 

ormance. Then, we test the model in the RSNA and the external 

Q500 databases. Finally, we compare the performance of the DGP- 

IL to other state-of-the-art classifiers in ICH. 

To measure the performance of the different variants of DGP- 

IL and compare to other state-of-the-art methods, we mainly use 

hree important metrics: F1 score, Area Under the Curve of the re- 

eiver operating characteristic (ROC-AUC) and the precision-recall 

PR-AUC) curve. The F1 score measures the performance based on 

recision and recall and is a common machine learning metric that 

s also suitable for class-imbalanced scenarios. The ROC plots the 

rue positive rate against the false positive rate for different con- 

dence thresholds of the model. Here, a good model can obtain a 

igh true positive rate while maintaining a low false positive rate. 

he precision-recall curve plots precision against recall for differ- 

nt confidence thresholds. All three metrics have a range between 

 and 1 and the higher the value, the better. 

.4.1. Ablation studies 

This subsection studies the characteristics of the DGPMIL model 

nd its hyperparameters. We conducted an ablation study. Specif- 

cally, we report the impact of the number of feature dimensions, 

he number of DGPMIL layers, the number of inducing points, and 

he dimensionality of the latent space on GPs’ performance. 

We start by analyzing the effect of different feature space di- 

ensions M of the vectors ξi that enter the DGPMIL model and 

he number of GP layers, i.e., the depth of the proposed model. 

e compare the shallow VGPMIL to the DGPMIL models with 2, 

, and 4 layers for 8, 32, and 128-dimensional input features. We 

easured the performance at the scan (bag) level. During these ex- 

eriments, we fixed the number of inducing points to 200 and the 

atent space dimensions to 3. See below for an analysis of these 

yperparameters. 

Figure 3 shows the results for the RSNA dataset, while Fig. 4 

hows the results for the CQ500 dataset. Both figures report F1 

core, AUC-ROC, and AUC-PR metrics. As we can observe in all fig- 

res, the shallow VGPMIL model could not achieve satisfying re- 

ults for higher feature dimensions. We measured some signifi- 

ant performance drops, e.g., the AUC-ROC for the CQ500 dataset 

 Fig. 4 b) drops by 5% for 32 feature dimensions and 10% for 128

eature dimensions. The DGPMIL models show more robust perfor- 

ance in all three metrics, and even with 128-dimensional fea- 

ure vectors, they achieve satisfying results. Within the different 

GPMIL models, higher feature dimensions seem to harm the DGP- 

IL2 model the most, as the performance drops are larger than for 

https://www.kaggle.com/c/rsna-intracranial-hemorrhage-detection/
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Fig. 3. RSNA dataset: F1 score, AUC-ROC and AUC-PR for GP and DGP models using different input feature dimensions. 

Fig. 4. CQ500 dataset: F1 score, AUC-ROC and AUC-PR for GP and DGP models using different input feature dimensions. 
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he DGPMIL3 and DGPMIL4 models for all AUC metrics ( Figs. 3 b,c, 

 c,d). Regarding the F1 score, we can even see improved perfor- 

ance when using more feature dimensions. The DGPMIL3 and 

GPMIL4 models both show a better F1 score when using 128 di- 

ensions in comparison to 8 on both datasets (see Figs. 3 a and 4 a).

verall we observed that DPGMIL can learn useful models from 

eature vectors of higher dimensions while the shallow VGPMIL 

an not. In Section 4 , we further discuss this interesting relation- 

hip between feature dimensions and GP layers. 

In the final experiments, we stick to DGPMIL2 with 8 feature 

imensions because this setting still achieves the best results on 

oth datasets in terms of AUC-ROC and AUC-PR. 

Next, we studied the effect of varying the number of inducing 

oints while leaving the feature dimensions fixed at 8 and latent 

pace dimensions at 3. As reported in Table C.1 , we observed a 

obust performance across different numbers of inducing points. 

00 inducing points show the best F1 scores for both datasets 

nd the best AUC ROC for the RSNA dataset, we use this setting 

or the following experiments. Further increasing the number of 

nducing points did not provide any significant improvement and 

ed to higher computational costs. Similarly, we conducted exper- 

ments to prove that the relatively small number of GP’s latent 

pace dimensions of D = 3 is enough. Table C.2 shows that the per-

e

7 
ormance of the model with 3 and 10 latent dimensions is compa- 

able, while 50 dimensions lead to a model that can not converge 

nymore. 

In summary, we observed that the DGPMIL model is not very 

ensitive to the analyzed hyperparameters. In these experiments 

e made an interesting observation: for higher-dimensional fea- 

ure vectors, more GP layers should be used because the shallow 

GPMIL model is not able to obtain good results. This finding is 

urther discussed in Section 5 . For the final results, we used 8 di- 

ensional feature vectors, 200 inducing points, and 3 dimensions 

n the GP latent space. For the number of GP layers, all model vari- 

nts are included in the experiments under the names DGPMIL2, 

GPMIL3, and DGPMIL4. 

.4.2. Results for the RSNA dataset 

Table 3 shows the results of testing with the RSNA dataset 

or 8-dimensional features. For this test set, although models are 

rained with only the scan labels, we have both slice and scan la- 

els to evaluate the model performance. We reported the perfor- 

ances of the Attention-CNN model, VGPMIL, and DGPMIL with a 

ifferent number of layers. Mean-aggregation of the feature vectors 

as previously analyzed for this problem [17] and can be consid- 

red a simple baseline with a bag-level ROC-AUC of 0.768. Regard- 
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Table 3 

Mean results testing with the RSNA dataset for 8-dimensional features in five different runs at both slice 

and scan level. VGPMIL is the shallow Variational GP while DGPMIL is the deep version with 2, 3, and 4 GP 

layers. The CNN stands for the attention-based CNN. 

Slice level metrics VGPMIL DGPMIL2 DGPMIL3 DGPMIL4 CNN 

Accuracy 0.938 ±0.003 0.929 ±0.003 0.927 ±0.005 0.928 ±0.002 0.923 ±0.005 

F1 score 0.766 ±0.013 0.781 ±0.007 0.776 ±0.01 0.780 ±0.006 0.773 ±0.008 

Cohen’s kappa 0.731 ±0.015 0.739 ±0.009 0.732 ±0.013 0.737 ±0.007 0.727 ±0.011 

Scan level metrics VGPMIL DGPMIL2 DGPMIL3 DGPMIL4 CNN 

Accuracy 0.780 ±0.089 0.825 ±0.006 0.805 ±0.014 0.809 ±0.018 0.781 ±0.023 

F1 score 0.814 ±0.059 0.839 ±0.006 0.824 ±0.013 0.827 ±0.012 0.811 ±0.017 

Cohen’s kappa 0.567 ±0.172 0.654 ±0.011 0.614 ±0.029 0.622 ±0.035 0.569 ±0.045 

AUC-ROC 0.964 ±0.006 0.957 ±0.011 0.9530 ±0.011 0.951 ±0.012 0.951 ±0.011 

AUC-PR 0.846 ±0.043 0.961 ±0.011 0.956 ±0.016 0.955 ±0.014 0.841 ±0.013 

Fig. 5. RSNA dataset with 8-dimensional features: F1 score and AUC values with 0.95 confidence interval. 
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ng our analyzed models, the CNN model obtains the worst results 

nd coupling the feature vectors to GPs improves the performance 

onsiderably. For most of the metrics at slice and scan levels, we 

ee that DGPMIL2 shows the best performance. 

Figure 5 shows F1 score and AUC values with 0.95 confidence 

nterval. We can see that VGPMIL has a high variance for the F1 

core and AUC-PR at the bag label while DGPMIL obtains good re- 

ults with tight confidence intervals. This shows that DGPMIL is 

ore robust. Furthermore, the non-overlapping intervals of DGP- 

IL against its competitors at the AUC-PR show visually the sta- 

istically significant improvement of DGPMIL thanks to the better 

recision. 

Some examples of DGPMIL predictions for the RSNA dataset can 

e found in Fig. 6 . Furthermore, we include some misclassified 

lices in Fig. 7 . Figure 7 a and b are false negatives with predic-

ion probabilities of 0.23 and 0.16. We found that they are both the 

nly positive slice in their own scans, so the model is more diffi- 

ult to detect those small and mild types of hemorrhage. Figure 7 c 

s a false positive slice predicted from an ICH scan with probabil- 

ty of 0.60. It is adjacent to a positive slice, so it might be pre-

icted as positive because some bleeding can still be found in this 

lice. Figure 7 d is a false positive slice predicted from a normal 
t

8 
can with probability of 0.59. In this case, although the probability 

s low and close to 0.5, a false positive slice will lead to an over-

ll positive scan prediction. Therefore, in order to handle all these 

hallenges, for future work we propose to not treat the instances 

ndependently but focus more on the correlations among the in- 

tances, i.e., the sequence of the slices in a scan. 

.4.3. Results for the external database CQ500 

Table 4 shows the results of our trained model (on RSNA) tested 

ith the CQ500 dataset for 8-dimensional features. For this test 

et, we only have scan labels. DGPMIL2 outperforms all other mod- 

ls in all metrics. Especially in the Cohen’s Kappa value and AUC- 

R we can see huge improvements in comparison to the CNN and 

GPMIL model. Figure 8 b shows F1 score and AUC values with 

.95 confidence interval. We can see that VGPMIL has a large vari- 

nce both for the F1 score and AUC-PR metrics. Again, DGPMIL, 

pecially DGPMIL2 and DGPMIL3, obtains a tight confidence in- 

erval even when generalizing to an external database. The non- 

verlapping confidence intervals show the statistical superiority of 

he proposed DGPMIL in AUC-PR. 
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Fig. 6. Examples of two bags with DGPMIL predictions at bag-level and at instance-level. Left: an ICH scan with a bag prediction of 0.834; Right: a normal scan with a bag 

prediction of 0.217. Probability p ≥ 0 . 5 denotes an ICH prediction is positive and p < 0 . 5 denotes a negative ICH prediction. The model is trained at bag-level but it is able to 

provide individual instance label correctly as the p values indicate. 

Fig. 7. Examples of False Negatives (FN) and False Positives (FP) with DGPMIL predictions at the instance level.(a,b) False Negatives; (c) a False Positive from a positive bag; 

(d) a False Positive from a negative bag. Probability p ≥ 0.5 denotes an ICH prediction is positive and p < 0.5 denotes a negative ICH prediction. 

Fig. 8. CQ500 dataset with 8-dimensional features: F1 score and AUC values with 0.95 confidence interval. 

9 
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Table 4 

Mean results testing with the CQ500 dataset for 8-dimensional features in five different runs at scan level. 

VGPMIL is the shallow Variational GP while DGPMIL is the deep version with 2, 3, and 4 GP layers. The 

CNN stands for the attention-based CNN. 

Scan level metrics VGPMIL DGPMIL2 DGPMIL3 DGPMIL4 CNN 

Accuracy 0.639 ±0.106 0.717 ±0.035 0.713 ±0.023 0.701 ±0.041 0.655 ±0.043 

F1 score 0.693 ±0.058 0.735 ±0.022 0.733 ±0.015 0.728 ±0.024 0.700 ±0.023 

Cohen’s kappa 0.335 ±0.171 0.461 ±0.059 0.455 ±0.039 0.436 ±0.068 0.359 ±0.069 

AUC-ROC 0.906 ±0.010 0.909 ±0.005 0.906 ±0.005 0.904 ±0.015 0.906 ±0.010 

AUC-PR 0.761 ±0.033 0.889 ±0.011 0.886 ±0.011 0.874 ±0.029 0.765 ±0.012 

Table 5 

Comparison of different approaches for binary ICH detection. Our results are reported as the mean 

of 5 independent runs. 

ICH detection at scan-level with different dataset 

Source Dataset size Labeling type Method ROC AUC 

Saab et al. [24] 4340 scans Scan MIL 0.91 

Jnawali et al. [9] 40357 scans Scan 3D CNNs 0.87 

Titano et al. [8] 37236 scans Scan 3D CNNs 0.88 

Sato et al. [30] 126 scans Scan 3D Autoencoder 0.87 

Arbabshirani et al. [29] 45583 scans Scan 3D CNNs 0.85 

VGPMIL (Wu et al. [17] ) 1150 scans Scan MIL 0.964 

DGPMIL2 1150 scans Scan MIL 0.957 

Evaluation on CQ500 

Source Dataset size Labeling type Method ROC AUC 

Chilamkurthy et al. [27] Slice 2D CNNs 0.94 

Nguyen et al. [32] 490 Slice 2D CNN + LSTM 0.96 

Monteiro et al. [31] scans Scan voxel-based CNN 0.83 

VGPMIL (Wu et al. [17] ) Scan MIL 0.906 

DGPMIL2 Scan MIL 0.909 
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.4.4. State-of-the-art comparison 

The performance of DGPMIL is compared with those state-of- 

he-art studies, as shown in Table 5 . It shows that our model out- 

erforms other models trained at scan-level with an AUC-ROC of 

.957, including basic MIL [24] , 3D CNNs [8,9,29] , and 3D autoen- 

oder [30] . In addition, it is comparable to VGPMIL [17] with an 

UC-ROC of 0.964. Note, that in this case, different scan-level ap- 

roaches for ICH detection are compared that are using different 

atasets. Therefore we add a comparison of different models for 

he CQ500 dataset, where all models are tested on the same set. 

t the same time, this dataset serves as an external test set (as de- 

cribed above) because the model is trained on the RSNA dataset. 

GPMIL achieves an AUC-ROC of 0.909, which performs better than 

he methods that are trained at the same scan-level with an AUC- 

OC of 0.906 [17] and 0.83 [31] . Furthermore, the performance of 

GPMIL is comparable to those trained at slice-level [27,32] , where 

he AUC-ROC scores ranged from 0.94-0.96. 

. Discussion 

In MIL problems, having a good instance classifier does not nec- 

ssarily lead to a good bag classification. For the MIL setting, one 

isclassification of one instance leads to the wrong classification 

f a full bag. For this reason, well-calibrated models are desirable 

n MIL. The introduction of DGPMIL overcomes this problem and 

eaches much better classification performance at the bag level. 

urthermore, it still retains a good instance performance, making 

t suitable for classifying new unseen or unlabeled instances. 

DGPMIL achieves State-of-the-art results and generalizes bet- 

er. Table 5 compares the ICH prediction results with other meth- 

ds at scan-level. DGPMIL outperforms other methods based on 

UC-ROC score except for VGPMIL [17] , but DGPMIL performs sig- 

ificantly better than [17] in AUC-PR score and F1 score as pre- 

iously discussed. Furthermore, we include an external database 

CQ500) to check the generalization capability of our proposed 
10 
odels. In this real-world scenario, we are more interested in 

raining a model on a dataset from a center and using it to predict 

orrectly on the dataset from another center. The external evalua- 

ions on CQ500 dataset show that DGPMIL outperforms other mod- 

ls in Table 4 , which proves the good generalization of our model. 

e further compare the performance of DGPMIL on CQ500 with 

hose state-of-the-art studies in Table 5 . It shows that DGPMIL out- 

erforms other methods train with the same labeling type on the 

can [17,31] and it is comparable to other studies that training with 

recise slice labels [27,32] . It is remarkable that DGPMIL2 performs 

ell across all different f eature spaces. In addition, by selecting the 

umber of layers, we can adjust the model to extract features with 

ifferent dimensions. Since DGPMIL achieves good predictions at 

can level, it is the most suitable for diagnosis on unseen scans 

rom different centers. 

DGPMIL is able to achieve good results with complex high- 

imensional data. We have seen in the MNIST experiment 

 Section 3.1 ) as well as in the ablation studies of the hemorrhage

lassification problem ( Section 3.4.1 ) that the DGPMIL model can 

andle complex, high-dimensional feature distributions while the 

hallow VGPMIL model shows significant performance drops. This 

an be explained by the better ability to approximate complex 

unctions due to multiple stacked GP layers. It enables the model 

o transform the feature distribution in the latent space, as de- 

icted in the explanatory example of Fig. A.12 , and leads to higher 

xpressiveness. This property makes the DGPMIL especially inter- 

sting for other problems with a fixed, high number of feature di- 

ensions where the DGPMIL model can be expected to outperform 

hallow models like VGPMIL by even a larger margin than in our 

nal results with 8-dimensional features. 

DGPMIL outperforms VGPMIL in a synthetic example. The 

rst experiment is compared DGPMIL and VGPMIL models on a 

ynthetic example using the MNIST dataset. Regarding the instance 

lassification, the overall performance of DGPMIL is only slightly 
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etter than VGPMIL when PCA is implemented. This indicates that 

or a problem with low-dimensional extracted features, both shal- 

ow and deep models perform well when classifying instances. 

owever, this is not the case for bag classifications where DGP- 

IL outperforms VGPMIL and it corroborates the premise of a good 

nstance classification is not enough. The proposed DGPMIL over- 

omes this limitation and is more suitable for MIL problems than 

he previous VGPMIL. As shown in Table 2 , without a previous fea- 

ure extraction on MNIST dataset, VGPMIL is not able to learn a 

ood model. 

Coupling an attention-based CNN with GPs produces better 

esults. Although CNNs are widely applied in different areas of 

edical images, using only a standard CNN in MIL problems is 

ot good enough because many details in bags are hidden. For the 

CH detection task, we show that the CNN predictions can be sub- 

tantially improved by further utilizing the extracted features with 

P models (i.e., both VGPMIL and DGPMIL), leading to better in- 

tance and bag classification results. As shown in Fig. 6 , with the 

eatures extracted by an attention-based CNN, DGPMIL is able to 

rain images at scan-level and accurately predict images at slice- 

evel. This fact encourages the use of GP models for ICH detection 

ithout radiologists’ manual annotations on each slice. Since prob- 

bilistic models quantify better the uncertainty and are therefore 

ven more adequate for this medical diagnosis scenario than de- 

erministic model such as standard CNNs. 

DGPMIL retains a good precision. The F1 score achieved by 

GPMIL is better than that obtained by the CNN and VGPMIL. Con- 

idering the AUC of the ROC and PR curves, we observe that al- 

hough VGPMIL and the CNN show good AUC-ROC results, their 

UC-PR results are worse, meaning that the precision scores of 

hese models are poor compared with DGPMIL. In other words, 

oth VGPMIL and the CNN produce many false positives, which 

verload the doctors with a lot of false ICH detections. DGPMIL 

s capable of detecting suspicious cases with a high precision, as 

hown in Table 3 , that the AUC-PR of DGPMIL2 for RSNA dataset 

eaches that of 0.961. 

DGPMIL performs much better at the bag level. This fact has 

een already reflected in the synthetic example of MNIST and has 

een further confirmed on a real-world CT scan experiment. Al- 

hough sometimes VGPMIL achieves a good classification on CT 

lices, DGPMIL outperforms VGPMIL at scan level. In terms of MIL 

roblem, misclassifying only one instance in a negative bag will 

uin the classification of the full bag. This is the reason why both 

GPMIL and the CNN misclassify many negative bags with false 

ositives because they cannot handle the uncertainty quantifica- 

ion while DGPMIL achieves the best precision and as a conse- 

uence reaches a better diagnosis at the bag level. 

Advantages and drawbacks of DGPMIL: Our approach is an at- 

ractive alternative to attention CNNs for MIL that achieves good 

erformance by integrating a probabilistic model, Gaussian Pro- 

esses. In addition, compared to other weakly supervised learn- 

ng methods [8,9] , DGPMIL is easy to train as it does not have

any hyperparameters or model parameters and can be used even 

ith limited computing power. This work exploits its formulation 

o achieve a satisfying performance compared to previous meth- 

ds for ICH detection, as shown in Table 5 , at both scan-level 

nd slice-level. Furthermore, the AUC-PR results are remarkable in 

omparison to other models in Tables 3 and 4 . This metric indi- 

ates that it is not prone to have many false positives, which is 

mportant for medical applications to not distract from the really 

evere cases. Furthermore, it is robust to overfitting and general- 

zes better than other methods on external testing dataset [17,31] . 

owever, as DGPMIL can not deal with images directly, it relies 

n a first step based on a CNN for feature extraction. Although 

his adds on extra training and parameter tuning procedures, it 

hows that our method can generalize well to other MIL problems 
11 
33] by just exchanging the feature extractors. Future work will fo- 

us on building an end-to-end training CNNs and GPMIL model. 

nother drawback of DGPMIL is that it does not take the order of 

he instances into account. Instances are trained independently in 

 bag, but the correlations existing in nearby instances may boost 

he performance of the model. Future work will try to implement 

ome sequential models [32] into DGPMIL to extract the features 

mong the order of instances. 

. Conclusions 

In this work, we propose a novel model, DGPMIL, for MIL clas- 

ification based on DGPs. DGPs are a hierarchical extension of the 

idely used GPs. Furthermore, we use DGPMIL for ICH detection 

n CT scans combined with the features extracted by an attention- 

ased CNN using only scan labels. To the best of our knowledge, 

his is the first time DGPs have been proposed for the MIL prob- 

em and specifically for ICH detection. 

The experiments show that DGPMIL can obtain good results 

ith high-dimensional data by extracting more complex patterns 

n contrast to the shallow VGPMIL. For instance, DGPMIL outper- 

orms VGPMIL in a synthetic MIL problem of classifying digits us- 

ng the MNIST database. When using data with dimensionality re- 

uction, VGPMIL performs slightly worse at the instance level com- 

ared to deep versions. However, when raw MNIST is used, VGP- 

IL can not learn a good model. Furthermore, DGPMIL performs 

otably better at the bag level, which is the final objective of the 

IL problem. 

We empirically validate the model in a real-world application. 

e detect ICH on CT scans using only scan labels. The experiment 

esults demonstrate that combining a CNN with a GP leads to an 

mprovement in the results. DGPMIL achieves the best performance 

ompared to VGPMIL, the attention CNN and other state-of-the-art 

ethods. Furthermore, it achieves a great precision value in con- 

rast to VGPMIL and the attention CNN. 

Additionally, we use a different database for assessing the gen- 

ralization capability of the methods. This evaluation proves that 

GPMIL generalizes better when predicting at scan level. All of 

hese facts make DGPMIL with an attention-based CNN suitable 

or ICH diagnosis. Also, it can potentially be applied to many other 

edical-imaging problems. 
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ppendix A. Revisiting Gaussian processes 

This appendix provides a brief introduction to GPs for binary 

lassification. Let us assume a dataset D = { (x n , y n ) } N n =1 composed

f N instances with y n ∈ { 0 , 1 } . 
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Fig. A1. Example of different sampled functions from a 1-dimensional GP with an SE kernel. Y-axis represents the value of the sampled function and X-axis the input feature 

of the GP. We use different values of the lengthscale hyperparameter to show how it affects the resulting functions. Shorter values of the lengthscale l produce wriggly curves 

while larger values produce flat functions. 
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A Gaussian process prior assumes a multivariate normal distri- 

ution in the latent variable f = ( f 1 , . . . , f N ) T
 given X . This prior

istribution is defined by a mean function μ(x ) and a kernel (co- 

ariance function) k (x , x ′ ) . The mean function is usually set to 0 ,

ithout losing generality. The kernel encodes the prior belief about 

he data. In this paper we use the Squared Exponential (SE) kernel. 

t is a common choice in Gaussian Processes due to its flexibil- 

ty and expressiveness. Also, it encodes smoothness in the latent 

unction, which is a desirable property in many different scenarios. 

he SE kernel is defined as k SE (x i , x j ) = C exp 

(−|| x i −x j || 2 
2 l 2 

)
, where

he parameters C and l are estimated through the learning task. 

igure A.9 shows samples of a GP prior with a SE kernel with dif-

erent values of l. We can see that the level of smoothness relies on 

he value of l. Large values of l produce flat functions while small 

alues produce less smooth functions. It is worthy noticing that 

hese functions do not have varying levels of smoothness across 

he data points. This is one of the motivation to use DGPs, e.g., 

unctions with flat areas and abrupt jumps. 

Once we have modelled the latent function f using a GP 

rior, we have to define the observation model. Our likelihood 

or binary classification is the Bernoulli distribution, i.e., p(y i | f i ) = 
m

12 
er (y i ;σ ( f i )) . Here, σ is the sigmoid and f i = f (x i ) refers to the 

alue of the latent variable f at the point x i . The joint density of y

nd f becomes, 

(y , f ) = 

N ∏ 

n =1 

p(y n | f n ) 
︸ ︷︷ ︸ 

likelihood 

p(f ) ︸︷︷︸ 
GP prior 

, (A.1) 

here we assume independence across the instance labels given 

he latent variables. The goal becomes the estimation of the model 

arameters, in this case C and l, and the calculation of p(f | y ) . 
One main drawback of Gaussian Processes is their scalability. 

hey have computational cost O(N 

3 ) because their use involves 

he inversion of an N × N matrix. To overcome this limitation, 

parse GPs have been proposed [34] . The idea behind them is 

o define ˜ M 
 N inducing points u m 

which are GP realizations at 

nducing locations z m 

. We can see this as f (z ) = u . The induc-

ng points encode the information of the observations in a few 

oints. Their locations { z m 

} M 

m =1 
are estimated while learning. This 

pproach lightens the computational cost to O(n ˜ M 

2 ) . However, 

he posterior distribution is intractable and approximate inference 

ust be used. The Scalable Variational Gaussian Process (SVGP) in- 
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Fig. A2. Example of a Sparse Gaussian Process on a 1-dimensional regression problem. We draw the latent function that generates the noisy observed data, the mean of the 

estimated GP, the uncertainty and also the estimated inducing locations. The GP has more uncertainty where there are less inducing points. 

Fig. A3. 1-dimensional binary classification problem with the input dimension on the x-axis and output dimension on the y-axis. The blue points represent the noisy 

observed data. In (a) we draw the distribution of the latent function p( f ∗) : the gray line is the mean and the gray shadow the 0.95 confidence interval on the predictions. 

The classifier has more uncertainty in the region where there are no observations. In (b) we squash the latent function to the [0,1] interval, the black line is p(y ∗ = 1) . 

Fig. A4. Samples at every layer of a three-layer DGP trained on a binary toy example. The first two layers are latent spaces where the features are projected onto. The third 

layer is the output for the final classification. The y-axis represents the values of the latent function before it goes through the sigmoid function. Positive values will be 

classified as in the positive class and negative values as in the negative one. 

13 
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erence is the state of the art for sparse GPs [18] . Furthermore, it

llows to train in mini-batches. The joint density in this case is 

iven by 

(y , f , u ) = 

N ∏ 

n =1 

p(y n | f n ) 
︸ ︷︷ ︸ 

likelihood 

p(f | u ; Z )p(u ; z ) ︸ ︷︷ ︸ 
sparse GP prior 

, (A.2) 

he semicolon notation indicates which are the inputs of each 

unction. The goal here is to calculate p(u , f | y ) and estimate the

odel parameters. 

Figure A.10 shows a Sparse Gaussian Process for a 1- 

imensional regression problem. We see that the GP mean ap- 

roaches the latent function that generates the noisy observed 

ata. The latent function is inside the confidence interval, and the 

ncertainty is larger in areas with less inducing points. Also notice, 

hat the optimal location for the inducing points is where the func- 

ion has more variations. Figure A.11 shows a GP for binary classi- 

cation in a 1-dimensional toy problem. In (a), we draw samples 

or the posterior distribution of p(f | y ) . We can notice that all the

amples have the same level of smoothness. Then, in (b) we show 

he probabilities estimated for the positive class after the sigmoid 

unction. 

1. Revisiting deep gaussian processes 

A DGP is a hierarchical model which consists of several stacked 

VGPs, i.e., the output of a SVGP is the input for the next SVGP 

21] . We define { F l } L 
l=1 

latent variables where each F l follows a GP

rior with input locations given by F l−1 . We consider F 0 = X . We

enote f l 
n,d 

as the latent variable value for the n th instance in the

imension d (being 1 ≤ d ≤ D 

l ) for the layer l. Notice that in this

roblem D 

L = 1 . The vector f l n contains all the dimensions for the

 th instance in the lth later. The likelihood of the unobserved in- 

tance labels is defined by a Bernoulli distribution, 

(y n | f L n ) = σ ( f L n ) 
y n 
(
1 − σ ( f L n ) 

)1 −y n 
, (A.3) 

ssuming independence across the instance labels given the latent 

ariables, we obtain, 

(Y | f L ) = 

N ∏ 

n =1 

p(y n | f L n ) . (A.4) 

Because of the computational cost, we have to introduce again 

he so called sparsity. We have M 

l−1 inducing locations Z 

l−1 at 

ach layer l with inducing values U 

l for each dimension. So we 

an write the joint density function, 

(Y , { F l , U 

l } L l=1 ) = 

N ∏ 

n =1 

p(y n | f L n ) ︸ ︷︷ ︸ 
likelihood 

×
L ∏ 

l=1 

p(F l | U 

l ; F l−1 , Z 

l−1 )p(U 

l ; Z 

l−1 ) 

︸ ︷︷ ︸ 
DGP prior 

. (A.5) 

The Doubly Stochastic Variational Inference is the state of the 

rt for DGPs [20] . Furthermore, it allows to perform approximate 

nference and to train in mini-batches. 

Figure A.12 shows samples of the DGP latent function. We show 

amples from the first and second layer, which are the middle la- 

ent representation features before the final classification is done. 

hen, the third (final) layer is the one that makes the final clas- 

ification. We can see that the first layer produces smooth func- 

ions similar to the ones of the shallow GP. When we apply a GP 
14 
o these features we can obtain more complex patterns as shown 

n the second layer. The flat regions are smooth while the jumps in 

he decision boundaries are abrupter. Although it is a very simple 

roblem, we actually can see the greater expressiveness of DGPs 

gainst shallow GPs. This fact encourages their use for complex 

asks, as it is in the ICH detection problem. 

ppendix B. Detailed DGPMIL inference 

This appendix contains all the details for inference in DGPMIL. 

e follow the doubly stochastic inference to estimate the varia- 

ional parameters corresponding to the DGP [20] . Together with 

 b = { y i | i ∈ bag b} , as defined in Section 2.1 , we introduce Y b−n =
 y i | y i ∈ bag b and i � = n } . 

1. Update of q(y ) 

The optimal q(y n ) distribution fixing the other distributions is 

iven by 

og q(y n ) = E q(Y b−n ) [ log p(T b | y b ) ] + E q( f L n ) 

[
log p(y n | f L n ) 

]
+ const 

= log H · E q(Y b−n ) [ G b ] + E q( f L n ) 

[
log p(y n | f L n ) 

]
+ const . 

(B.1) 

ow we rewrite the max function as 

ax Y b = y n + max Y b−n − y n max Y b−n , (B.2) 

nd substituting in Eq. (B.1) (using also the Jakkola bound [26] ) 

rises 

og q(y n ) = y n E q( f L n ) 

[
f L n 

]
+ y n log H(2 T b − 2 T b E q(Y b−n ) 

[ max { Y b−n } ] 
+ E q(Y b−n ) 

[ max { Y b−n } ] − 1) + const . (B.3) 

e use the following approximation as in [16] , 

 [ max { y i } ] ≈ max { E [ y i ] } , (B.4)

o finally obtain the optimal update for q(y ) , 

 n ← σ
(
E q( f L n ) 

[
f L n 

]
+ log H · (2 T b + max q b−n − 2 T b max q b−n − 1) 

)
.

(B.5) 

2. ELBO derivation 

Using Eq. (B.4) , the ELBO (V , �, { Z 

l−1 } L 
l=1 

) is finally approxi-

ated by 

LBO = 

N ∑ 

n =1 

E q(y n )q( f L n ) 

[
log p(y n | f L n ) 

]
+ 

B ∑ 

b=1 

∑ 

n ∈ b 
E q(y n ) 

[
log 

H 

G b 

H + 1 

]

−
N ∑ 

n =1 

E q (y n ) [ log q(y n ) ] −
L ∑ 

l=1 

E q(U l ) 

[
log 

q(U 

l ) 

p(U 

l ) 

]

≈
N ∑ 

n =1 

q n E q( f L n ) 

[
log p(y n = 1 | f L n ) 

]
+ (1 − q n ) E q( f L n ) 

[
log p(y n = 0 | f L n ) 

]
+ log H 

B ∑ 

b=1 

( 2 T b max q b − max q b ) 

−
N ∑ 

n =1 

q n log q n + (1 − q n ) log (1 − q n ) −
L ∑ 

l=1 

KL 
(
q(U 

l ) || p(U 

l ) 
)

+ const . (B.6) 
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Table C.2 

Mean results for 5 different runs of DGPMIL2 with 8-dimensional input features. 

The results are for both RSNA and CQ500 datasets. We study the metrics for a vary- 

ing number of dimensions D in the latent space. 

D F1 score AUC-ROC AUC-PR 

RSNA 3 0.839 ±0.006 0.957 ±0.011 0.961 ±0.011 

10 0.837 ±0.008 0.957 ±0.09 0.964 ±0.006 

50 0 0.5 ±0 0.48 ±0 

CQ 500 3 0.735 ±0.022 0.909 ±0.005 0.889 ±0.011 

10 0.733 ±0.022 0.914 ±0.013 0.902 ±0.0279 

50 0 0.5 ±0 0.418 ±0 

R

 

 

 

[

 

 

[

[

[

3. Deep Gaussian process estimation 

We can compute analytically the posterior for { F l } L 
l=1 

by 

arginalizing the inducing variables from each layer: 

({ F l } L l=1) = 

L ∏ 

l=1 

q(F l | m 

l , S l ; F l−1 , Z 

l−1 ) = 

L ∏ 

l=1 

N (F l | ̃  μl 
, ˜ �

l 
) , (B.7)

here [ ̃  μl ] n = μm 

l , Z l−1 (f l−1 
n ) and [ ̃  �

l 
] i j = �S l , Z l−1 (f l−1 

i 
, f l−1 

j 
) . The

xplicit expression for the mean vector ˜ μl and the covariance ma- 

rix ˜ �l can be found in [20 , Eqs. (7–8) ]. We are able to compute

he i th marginal at each layer because it only depends on the cor- 

esponding i th input of the previous layer. This allows to sample 

rom the last layer f L 
i 

by recursively sampling from all the previous 

ayers ˆ f 1 
i 

→ ̂

 f 2 
i 

→ · · · → ̂

 f L 
i 
. This can be easily performed by means 

f univariate Gaussians. We first sample a ε l 
i 
∼ N (0 , 1) and then

or l = 1 , . . . , L : 

 

 

l 
i = μm 

l , z l−1 ( ̂ f l−1 
i 

) + ε l i ·
√ 

�S l , z l−1 ( ̂ f l−1 
i 

, ̂  f l−1 
i 

) . (B.8) 

Since we can sample from the posterior distribution in the 

ast layer, the expectation E 

q( f L n ) 
[ log p(y n | f L n )] in the ELBO (see

q. (B.6) ) can be approximated with a Monte Carlo sample gen- 

rated with Eq. (B.8) . Similarly, we can compute the expectation 

 

q( f L n ) 
[ f L n ] in the update of the q(Y ) , see Eq. (B.5) . For scalability,

e can use mini-batches in the optimization since the ELBO fac- 

orizes across data points. 

Once the model is trained and the ELBO optimized, we can 

ake a prediction for new test point X ∗. For this, we sample S

imes from the posterior using Eq. (B.8) . In this case, we use the

est location as initial input. This yields a set { f L −1 ∗ (s ) } S 
s =1 

with S

amples. Then, the density over f L ∗ is given by the Gaussian mix- 

ure (recall that all the terms in Eq. (B.7) are Gaussian): 

( f L ∗ ) = 

1 

S 

S ∑ 

s =1 

q( f L ∗ | m 

L , S L ; f L −1 
∗ (s ) , Z 

L −1 ) . (B.9)

ppendix C. Additional results 

Here, we report additional tables with results. These tables are 

ommented in the main text but we included them here for better 

eadability. 

able C.1 

ean results for 5 different runs of DGPMIL2 with 8-dimensional input features. 

he results are for both RSNA and CQ500 datasets. We study the metrics for a vary-

ng number of inducing points ˜ M . 

˜ M F1 score AUC-ROC AUC-PR 

RSNA 10 0.829 ±0.018 0.953 ±0.012 0.954 ±0.014 

50 0.834 ±0.016 0.954 ±0.01 0.96 ±0.008 

200 0.839 ±0.006 0.957 ±0.011 0.961 ±0.011 

500 0.835 ±0.006 0.956 ±0.012 0.962 ±0.009 

CQ 500 10 0.714 ±0.02 0.899 ±0.01 0.853 ±0.026 

50 0.734 ±0.024 0.911 ±0.012 0.887 ±0.024 

200 0.735 ±0.022 0.909 ±0.005 0.889 ±0.011 

500 0.731 ±0.026 0.913 ±0.01 0.893 ±0.009 
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